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Main topics

Given a set of jobs subject to time and resource constraints that
have to be completed as soon as possible

how to solve a scheduling problem

how to decide when to start/complete each job such that
- all constraints (resource + time constraints) are satisfied,
- all objectives are met.

how to distribute a scheduling problem

how to ensure that a scheduling problem can be decomposed
and parts can be solved independently.
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Our global plan

® maintenance scheduling: a simple example.

® specifying maintenance scheduling problems. me
® solving scheduling problems.
e distributing problems over independent teams. | Bob

e demo of a tool for maintenance scheduling.
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Example: train maintenance

axle integrity inspection
15 min preparation
40 min specialized work

brake repair
25 min preparation
/5 min specialized work

wheel profiling
35 min preparation
90 min specialized work
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Example: train maintenance

axle integrity inspection jobs

time
constraints

15 min efEBaraton
inspecialized worka ]

brake repair
25 miny ¢feparation

75 mi '-‘pecialized vvor:.

wheel profilin e m—

35 min gfeparation

A< resource
# constraints

90 minkgpecialized work
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Example: train maintenance

You are the planner ....
axle integrity ir
: 1. there is one person
15 min prep for doing the preparations.

40 min spec

2. there are plenty
of specialists available.

brake repair
25 min preparation
75 min spec You are required ....

- 1. to decide what to do when.
wheel profiling

2. to do it quickly: you
have at most 140 minutes.

35 min prep
90 min spec
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First attempt

(15,40) (35,90)

] preparation
5 special
e ' work
90
! | | i i i
0 30 60 90 120 150

140
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Second attempt

(35,90)

preparation

special
wWork

140
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Scheduling Algorithm

(35,90) (25,75)

scheduling algorithm l
begin this algorithm ensures
while there is still some job left a minimal makespan

choose the job with longest special work time;

mark the job as done; (prove it yourself )

end

]
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Remarks about the example

® The algorithm we showed is very efficient, but
requires an unbounded number of specialists.

® |[fthere is only one (1) specialist as resource, there
is also an efficient algorithm to find the best schedule.

® |f there is a bounded number of specialists (>1),
we don’t know an efficient algorithm, yet.

In fact, you will earn $1.000.000 by finding it!

http://www.claymath.org/millennium/

3
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Remarks about the example

® To solve the problem with a bounded number of specialists,
we have to rely on enumerating all possibilities.
( 10 jobs gives 3,6 x106 possibilities
20 jobs gives 2,4 x 1018 possibilities ).

® Such problems are assumed to be intractable problems.

® Most scheduling problems are suspected to be intractable.

& 3 £
. O
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Specificying Scheduling Problems

Time Constraintsl

precedence constraint: j < k

\ )

fy —> @ job on node format

P Pk

\/ processing time \/

Resource Constrained Project Scheduling Problem (RCPSP)

Resource Constraintsl
R, <€——— total units of resource i

¢ Job | requires Rj units of resource i

: I ¢ \We have to ensure that at any moment of time
] i R the total resource consumption does not exceed capacity

R renewable resource types

]
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RCPSP: Specification (i)
Precedence constraint: | < k ; @

Xit binary decision variable:
xit = 1 implies job j completes at end of time bucket t

start time | completion time

. 9
Tlme bUCketS | T T T I I I | | | | | | | |
1 t H = time horizon
(trivial upperbound on makespan)
H
e every job j has a unigue completion time: > xj = 1
H H t=1
e j<kimplies > txi + <) t.X« - P
t=1 t=1
t+p-1
e during any time bucket t, job j uses Rj. > X units of resource i
u=t
s




Solving the RCPSP as an IP

minimize 2 02X, 0,
t=1

H H
subject to Et-xﬁ +p, - Etxkt <0 forallj, k s.t. j <k
t=1 =1
n t+p;-1
E R; E X, |sR, i=1.R t=1..H
j=1 u=t

- Xi 1S a binary variable taking value / if job j is completed at time ¢ and O else,
- xn+1,,1s @ dummy job such that all jobs precede it,
- H 1s an upperbound on the makespan.

5
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Scheduling: complexity

Problem specification 1
‘NP-hard problem|

- set of linear time constraints Resource Constrained
- set of resource constraints Project Scheduling Problem
- objective: minimize makespan (RCPSP)

use heuristics to translate resource
constraints into time constraints

Problem specification 2
Efficiently solvable problem }

- set of linear time constraints

Simple Temporal Problem

- 561 Ol TESOuree-eeREar

- objective: minimize makespan (STP)

<3
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Our approach to solve RCPSP

Next, Bob discusses | concentrate on this
the reduction process problem first

Reduction |

aticdallaibg. .

AN ,;j‘Constraint NG
RCPSP — / posting — / STP

resource constraints translate resource
| + constraints into time time constraints
time constraints constraints

_ 3
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Simple Temporal Problem
(STP)

3
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From jobs to time points
Job-on-node format '

Precedence constraint
Jobj > Job k
start time 7, completion time

start time /7, completion time

.
.

“, maximum processing time

. .
J + J g J +
HE—— : B - H ’ - s

< . k < o : Kk kK < k >
\ = ; \
. .
\ .
. .
. .
. .
\ .

Job k
processing time (

Slack 4
inter-job constraint

tk

inimum processing time \/ \/
-t <-pj th -tk <0 tk - 'k < -p

Job-on-arc format '
7 s
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Simple Temporal Problems

A Simple Temporal Problem (STP)isatuple S=(7, C)

where
- | is a set of (time) variables

- C is a set of binary constraints of the form t" - t < 6,

where 6 is an arbitrary constant.

A solution to an STP S = (7, C) is an assignment
{ti=vi :tie T} ofvalues (times) to all variables in T
such that all constraints in C are satisfied.

WCMC Summerschool 2013 Breda, Auust 2013

All Constraints

are linear!

3
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Small example

Railway maintenance requires two jobs A and B to schedule.

Job A arrives at 12.00 hrs and requires at most 5 minutes.
Job B should start at least 2 minutes later than A, and
must be completed within 3 minutes after completion of A.
B requires at most 7 minutes and at least 2 minutes

to process.

When to start A, and when to start B?

variables
ta, 18 :start of A, B

t’a t's : completion of A, B

constraints (w.r.t.time reference zo)
Zo=0 ta-ta<d t'’B-t'Aa<3
ta-20< 0 ta-t’'A<0O t's-te< 7

Zo-1ta<O ta-tg < -2 Ig-t'B< -2

WCMC Summerschool 2013 : Breda, August
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Small example: STP

Railway maintenance requires two jobs A and B to schedule.

Job A arrives at 12.00 hrs and requires at most 5 minutes.
Job B should start at least 2 minutes later than A, and
must be completed within 3 minutes after completion of A.
B requires at most 7 minutes and at least 2 minutes

to process.

When to start A, and when to start B?

variables
ta, 18 :start of A, B

t’a t's : completion of A, B

constraints (w.r.t.time reference zo)
Zo=0 ta-ta<d t'’B-t'Aa<3
ta-20< 0 ta-t’'A<0O t's-te< 7

Zo-1ta<O ta-tg < -2 Ig-t'B< -2

WCMC Summerschool 2013 : Breda, August

This is the standard
representation in

Simple
Temporal
Problem

3
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Small example: Solution?

Railway maintenance requires two jobs A and B to schedule.
Job A arrives at 12.00 hrs and requires at most 5 minutes.

Job B should start at least 2 minutes later than A, and
must be Complei'r\ﬁl within 2 mini itAe aftAar AmAamnlAatian AF A

B requires at m
to process. ® How to find solutions in gener;

By trial and
When to start.

error:

variables
b ts startof A B Solution 1: Solution 2:
t’a, t’B : completion of A, B z =0 2z =0
. ' ta =0 ta =0
constraints (w.r.t.time reference zo) Fao= £, =5
Zo=0 ta-ta<h t's-t'A<3 B =2 s =6
' =4 s =8
ta-zo< O ta-t'A<O ts-te<7 = -
A starts at 12:00, A starts at 12:00,
Zo-ta<0  ta-te<-2 tp-tp<-2 B starts at 12:02 B starts at 12:06

]
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Small example: STN

Railway maintenance requires two jobs A and B to schedule.
Job A arrives at 12.00 hrs and requires at most 5 minutes.
Job B should start at least 2 minutes later than A, and

must be completed within 3 minutes after completion of A.
B requires at most 7 minutes and at least 2 minutes

to process.

When to start A, and when to start B?

variables Z20=0 Simple
ty ts :startof A, B Temporal  STN
0 0 Network

t’a t's : completion of A, B

. . () ta 5 t'a
constraints  (w.r.t.time reference zo) AN \/
Zo=0 ta-ta<d t-t'a<3 ) 3
th-z0< 0 ta-t'a<0 te-tg<s7 7 )

s > 1B

Zo-ta<0 ta-tg<-2 tg-tB<-2 \2_/

. %
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Implied constraints

explicit constraints can be combined to
imply other constraints:

constraints

ta-ta<h

ta-tg < -2

lg-t'B<-2

some iIied constraints

=

t'5-tg = (t's - l"D) (ta-ta)+ (ta-1B)

< 3 5 + -2
6

Note that the

implied constraint

is stronger, replacing
the original constraint

correspond to shortest paths in STN

strongest constraints in STP '

WCMC Summerschool 2013 Breda, August 2013

Z0

Look at the labels of the
edges as distances between
the corresponding nodes.

Finding an alternative path
comes down to identifying
another constraint!

3
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Z0

implied constraints

explicit constraints can be combined to imply
other constraints:

constraints some implied constraints :
ta-ta<d ts-tg=(t's -t'A)+ (t'a-ta)+ (ta-15)
th-tg < -2 < 3 + 5 + -2
= 6

lg-t's< -2
t's-t'a<3 fl ta-t'B=(t'a -ta (ta-tg)+ (ts-t'B) shortest paths can be

‘ -2 computed between any
ts-te<7 \ pair of nodes in the STN

strongest constraints in STP
correspond to shortest paths in STN

]
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20
ta

t'a

B

t's

20

STN S

constraint matrix

Zo ta ta 8 tB
O O & | © |
Ol 0| 5| 6| 8
w |w | 0| w]| 3
w | 2| 0] 7
w || o | 2|0

A\ path computation

equivalent
systems

/ all-pairs shortest ™\

N

WCMC Summerschool 2013 Breda, August 21

Z0
tA
t'a

B

=

minimal STN S’

distance matrix

Zo ta ta i tB
o0 5| 6| 8
Oy 0| 5| 6| 8

11 -1 0 1 3
2121 3| 0] 6
4141 1|-2|0

3
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20
ta

t'a

B

t's

WCMC Summerschool 2013 Breda, August 201

checking consistency

Given an STP S with its graph Gs and distance graph Ds, the following statements are
equivalent:
- S is consistent
ve entries on its di Lo i b
- Ds has no negative entries on its diagonal & this property can be

i 3
- Gs has no negative cycles checked in O(n”)

original constraint matrix distance matrix Ds = [ d(t,t)) ]

Z ’ tg t . . ’ ’

o ta ta I8 U8B S is consistent ‘ ia th 1B B

0| 0| 5| | 70 K C

0| 0| 5| 6] 8 {5~ th

%) %) 0 o0 3 ] t’A

o | 2| o 0! 7 all-pairs shortest tg

path computation
1) 0 00 -2 0

O(n3) t's

sl
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20
ta

t'a

B

t's
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Finding solutions

Given an STN S with its distance graph Ds, If Ds does not contain negative diagonal
elements, then

-theset {ti=D(zo, t) :i=1,2, ... n} U {zo = 0} is a solution latest starting times
-the set { ti=-D(t, zo) : i=1,2, ... n} U {zo0 = 0} is also a solution earliest starting times

@

original constraint matrix distance matrix Ds = [d(t,t’)]
Zo ta ta ts tB . Zo ta ta ts s
two solutions e
0105~ 20 5|68
olo|5|6]8 ;& t 5|68
00 o0 0 00 3 t'a 0 3
o | 2| o | 0] 7 all-pairs shortest (B 3 6
path computation
0 e i -2 0 O(nd) t's 1 0

3
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Finding solutions

elements, then

@

Take an arbitrary constraint t’ - t < 6. We have
D(o,t’) < D(zo,t) + D(t,t’) < D(zo,t) +
Hence, D(zo,t’) - D(zo,t) < 6. So the first set of
solutions satisfies every constraint.
Likewise,
D(t,zo) < D(t,t’) + D(t’,z0) < & + D(t’,z0)
Hence, D(t,zo) -D(t’,z0) < 6. So the second set of
solutions satisfies every constraint, too.

WCMC Summerschool 2013 Breda, August 201

Given an STN S with its distance graph Ds, If Ds does not contain negative diagonal

-theset {ti=D(zo, t) :i=1,2, ... n} U {zo = 0} is a solution

-the set { ti=-D(t;, zo) : i=1,2, ... n} U {zo = O} is also a solution

distance matrix Ds = [d(t, )]

Zo ta th ts s
t 5| 6| 8
t'a 0 3
B 3 6
t's 1 0

3
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Finding solutions: Example

5

5
5 N, STN (minimal)
t to

20 encoding two events t1 < to
starting in [0,9].
0 0 gin [0,9]

0
earliest latest
2 0 0 for every schedule o: values o(t) occur
between earliest and latest starting
t 0 5 times of 1.
but not all values between earliest and
to 0 5 latest starting times constitute a

schedule !

]
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Finding solutions: Example

STN

4> 3 violates constraint t71 - to< 0

earliest
20 0 (') 0 for every schedule o: values of(t) occur
= between earliest and latest starting times
t 0 l/ 4l\ 5 of t.
I but not all values between earliest and
to 0 3 / 5 latest starting times constitute a

schedule !

]
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STN

20

t1

to

2 N
\ZO)M/

0
earliest
0 olv/o

Y
0) l/ 4 )

T~ 3
O {31/ 5

Finding solutions: Example

Lesson learnt:

after choosing a value v for a
variable t, add the constraint

t = v to the STN and recalculate
the minimal STN

4 > 3 violates constraint t1 -to< 0

for every schedule o: values of(t) occur
between earliest and latest starting times
of t.

but not all values between earliest and
latest starting times constitute a
schedule !

]
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Finding solutions

sol =@
while T # @
select some t and v e [-D(t,zo), D(zo,t)];
add constraint {t = v} to STN and update the distance matrix Ds;
remove row and column t from Ds ;
sol := sol u {t=v};

distance matrix Ds = [d(t, )]

Zo ta th ts tB

start withtae [0,0]; addta=0
Z0 0 5| 6| 8
ta @@i 5167196
ta 111 0 1 3
1z 2| | 3| 0] 6
tg | 4] U] 1] 2]0

]
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start withtae [0,0]; addta=0
taketse [2,0]; add tg = 4; update

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

Zo ta ta tB UB

20 0 5 @ 8
iA

ta | -1 o 1] 3
(B @ 31 0] 6
t's | 4 11-2| 0

3
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start withtae [0,0]; addta=0
taketse [2,0]; add tg = 4; update

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

Zo ta ta tB UB

Zo 0 5| 4] 8
[A
ta | -1 0| 1] 3
(B -4 31 0] 6
tg | -4 1120
]
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start withtae [0,0]; addta=0
taketse [2,0]; add tg = 4; update

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

20
tA
LA
(B

=

Zo ta ta tB UB
0 5 8
-3 0 3
-6 -1 0
3
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start withtae [0,0]; addta=0
taketse [2,0]; add tg = 4; update

taket'ae [3,5]; addt’a=3; update

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

Zo ta ta i tB
Z0 0 @ 8
iA
HOBE 3
(B
rs | -6 1 0
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start withtae [0,0]; addta=0
taketse [2,0]; add tg = 4; update

taket'ae [3,5]; addt’a=3; update

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

Zo ta th ts s
Z0 0 3 8
[A
t'a -3 0 3
(B
rs | -6 1 0
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Finding solutions

Sol = @
while T = @
select some t and v e [-D(t,zo), D(zo,t)];

remove row and column t from D;
sol := sol u {t=v}

add constraint {t = v} to STN and update the distance matrix Ds;

start with ta < [ 0,0]; add

taket’'ae[3,5];
taket'se [0, 6] ;

solution s

WCMC Summerschool 2013 Breda, August 2013

distance matrix Ds = [d(t, )]

20
tA
LA
(B

=

Zo ta ta tB UB
0 §)
-6 0
3
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What did we achieve

® we introduced a (maintenance) scheduling problem
as a constraint problem:
set of jobs subject to time + resource constraints that
have to be completed as early as possible.

® we showed how to solve the problem if only time constraints
are present (STP)

e now Bob shows how to take the resource constraints into
account...

e ... that will happen after the break.

3
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From RCPSP to STP

Finding solutions by constraint posting

WCM Summer School 2014 Breda, August 2014 1 'fU Delft



Resource usage

Resource availability: Ri=1
Resource requirements: Rij=1 Rik =1
start time . completion time start time  — . completion time

A G

. g
kY .

g Iy

.

1y
.
[y

Resource Usage Profile

—time

]
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Resource usage

Resource availability: Ri=1
Resource requirements: R1j =1 Rik = 1
start time . completion time start time  — . completion time
Pk
Resource -k

Peak

—time

]
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Resource usage

Resource availability: R =1

Resource requirements: R1j =1 Rik = 1

start time . completion time start time  — . completion time

4 )
Key problem:

Job j and k may coincide; that is, the allowed time intervals (partially) overlap.
AND

Sum of resource requirements exceeds resource availability.

g Ky
. S . Y
. ) . Ny
. . g S
. Y . Ny
. . g S

-D); O —pk

£
&

&" ------------------ } e i

Earliest Start Time Job k

]
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Resource usage

Resource availability: R =1

Resource requirements: R1j =1 Rik = 1

start time . completion time start time  — . completion time

Key problem:
Job j and k may coincide; that is, the allowed time intervals (partially) overlap.
AND

Sum of resource requirements exceeds resource availability.

Solution (given the resource availability):
Add precedence constraint(s) to the existing set of constraints
such that no value assighment can cause a resource peak.

Latest Compjetion Time Job |

oy a .

Earliest Start Time J(gb k

]
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Constraint Posting

Resource availability: Ri=1
Resource requirements: R1j =1 Rik = 1
Precedence constraint
Job j » Job k
start time . completion time start time  — . completion time

Earliest Start Time Job k

]
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Precedence Constraint Options

¢ B R !
S —— =S :
oo r o oo oo oo i
k f ----------------------------------------------------------------- 1
4 )
If
Earliest Start Time Job j + Processing Time Job j < Latest Start Time Job k
then
Job j can proceed Job k.
N J

g
ks

]
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Earliest Start Time Assumption

.,.
«sl
i

Approach: Assume that each job starts as soon as possible.
(Earliest Start Time Schedule)

Note that resource profile check needs to be performed onlyat | *
those time points when some job starts.
# : \ .
Recipe: Identify resource peaks, and force precedence relations | *
by changing earliest start times until they are solved.

]
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Resource Chaining

One unit of

s it possible to relax the EST-assumption while avoiding new
resource peaks!?

resource R+

Recipe: Identify a feasible job-to-job flows of resource units, and
add precedence constraints accordingly.

]
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Basics of some heuristic

® Find resource feasible EST Schedule
® Assume jobs start as soon as possible

® Repeat until all resource conflicts are resolved
® |dentify existing resource conflicts
® Select resource for which activities should be scheduled first
® |dentify sequence options between competing activities
® Calculate best activity sequence

® Update earliest start times

® |dentify feasible job-to-job resource flows (Chaining)

® Add precedence constraints according resource flows

WCM Summer School 2014 Breda, August 2014 10 '?U Delft



Temporal Decoupling

Solving the independent scheduling problem in STP’s

WCM Summer School 2014 Breda, August 2014 1 'fU Delft



Temporal decoupling

In finding solutions, until now we assumed that one team/actor
controls the assignment of values to all the variables.

Suppose
- there is more than one team
- every team A controls a disjoint subset T, of variables
- each team A; wants to find a local solution to the sub-STN S,
generated by its set of time points 7,

This is the distributed scheduling problem for STN’s.

We discuss an efficient
solution to this problem:

Temporal Decoupling

WCM Summer School 2014 Breda, August 12 {UDelft




Temporal decoupling: example

Consider the maintenance example discussed before.
Suppose there are two teams.

One team (A) has to job A, the other (B) job B.

They would like to determine their schedule independently
from each other.

Suppose:
A chooses Sol(Sa) 2 {ta=0,t'a=2}
B chooses Sol(Sg) 2 {ts=3,t'’s =6}

O J
Both solutions satisfy the local tA O {A
constraints 1
But S0/(Sx) U So/(Ss) = 20 g 3
{ta=0,ta=2,18=3, =6} tg 6 ’ZJB
is not a solution of S | W
intuitive reason for failure:
some constraints are not implied by local constraints ! controlled by B

]
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Temporal Decoupling:

the method

WCM Summer School 2014 Breda, August 2014 19 'FU Delft



Temporal decoupling: method

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

D(t,t)

VoM Summer School 2014 ErccaNAIGIEHGOTS » TUDelft



Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

VoM Summer School 2014 ErccaNAIGIEHGOTS . TUDelft



Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

D(zo,t') t If D(t,20) + D(zo,t’) > D(t,t") then t- t < D(t,t)
is not implied by t’- zo < D(zo,t’) , zo- t < D(t,zo)

Dt t)

Z0

D(t,zo)

]
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Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

P(zo,t) t

Dt t)

Z0

D(t,zo)

If D(t,zo) + D(zo,t’) > D(t,t") then t’- t < D(t,t)
is not implied by t’- zo < D(zo,t’) , zo- t < D(t,zo)

We can ensure implication of t’- t = D(t,t’) by
intra-team constraints by tightening
t’- zo < D(zo,t') and zo - t < D(t,z0)

]
VoM Summer Sohool 2014 ErcdaNAUGUSREOTS » TUDelft



Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

DY) t If D(t,z0) + D(zo,t") > D(t,t") then t- t < D(t,t))
is not implied by t’- zo < D(zo,t’) , zo- t < D(t,zo)

We can ensure implication of t’- t = D(t,t’) by

1Dt intra-team constraints by tightening

Z0

t’- zo < D(zo,t’) and zo - t < D(t,z0)

DMO) Method: Choose 6t and 6r such that

1. -D(zo,t) < 6t < D(t,z0)

t 2. -D(t,zo) < 6r < D(z0,t")
3. 6t+ 6r < D(t,1)
Add constraints t’- zo < 6vr and zo-t < &6:t0 S
and compute new distance matrix.
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Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

Ot t

1D(t.t)

Z0

Ot

-t < D(t,t') implied by t'- zo < &r and zo- t < &t

If D(t,zo) + D(zo,t’) > D(t,t") then t’- t < D(t,t)
is not implied by t’- zo < D(zo,t’) , zo- t < D(t,zo)

We can ensure implication of t’- t = D(t,t’) by
intra-team constraints by tightening
t’- zo < D(zo,t’) and zo - t < D(t,z0)

Method: Choose 6t and 6r such that

1. -D(zo,t) < 6t < D(t,z0)

2. -D(t,zo) < 6r < D(z0,t")

3. 6t+ 6r < D(t,1)

Add constraints t’- zo < 6vr and zo-t < &6:t0 S
and compute new distance matrix.
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Temporal decoupling: methoad

Take an arbitrary constraint t’- t < D(1,t’) such that t and t’ belong to different blocks.

Consider the intra-team constraints t’- zo < D(zo,t’), zo- t < D(t,zo0).

o t If t- t < D(t,t) is implied by t- zo < & and
zo-t < &, it can be removed from S without

any consequence.

70 D(t,t)

This procedure can be repeated for every

Ot

inter team constraint not implied by

intra-team constraints.

The resulting system is a decoupled STN

]
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Summary

e We discussed the RCPSP scheduling problem
specifying both time and resource constraints.
RCPSP can be used to model maintenance scheduling problems.

e Thereis a method to convert the hard to solve RCPSP to a similar
easy to solve STP problem containing time constraints only.

e The method to solve STP problems provides a set of solutions, from
which an arbitrary solution can be chosen in an easy way. Hence
flexibility in solution finding is guaranteed.

e [f the problem has to be distributed over teams who want to schedule
independently, there exists an efficient temporal decoupling method
for STP’s

% 21
VoM Summer Sohool 2014 ErcdaNAUGUSREOTS - TUDelft





