
UNIVERSITEIT TWENTE.

Nederlandse Defensie Academie Ministerie van Defensie

Physical phenomena Loads & Failure Mechanisms

Prof. dr. ir. Tiedo Tinga Maintenance Technology Netherlands Defence Academy t.tinga@nlda.nl

Outline

- Background and introduction
- Load vs. Capacity
- Load types
- Failure mechanisms

Applications

- Preventive maintenance and prognostics
- RAMS analysis → Relevant Failure Parameter
- Condition monitoring
- Root cause analysis

Objective

Demonstrate benefit of understanding failures

- Enables quantification of maintenance
- Provides structured way of problem solving

• Give a flavour of loads & failure mechanisms

- Not complete overview
- Simple examples
 - > not representative for your practical problems
 - > illustrate principles
 - > demonstrate quantification some equations !

Provide directions for application

- Not complete overview
- Not in-depth treatment of one case

Background

Defence organization:

- Technologically sophisticated systems
- Largely variable and demanding operating conditions
- High requirements for availability and reliability
- Constant pressure to reduce costs

Maintenance important *Predictability* of maintenance desired

Introduction

Preventive maintenance -> length of intervals

Balance between

- low costs \rightarrow efficient
- high availability \rightarrow effective

Two approaches to find optimum

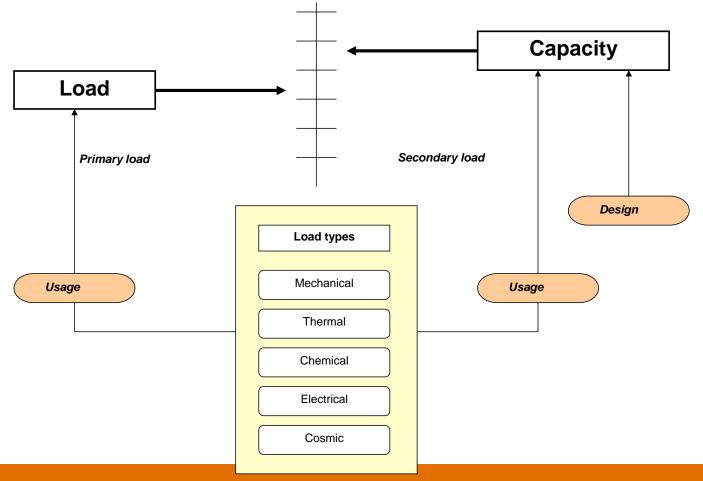
- Experience based approach
 - > predict failures based on historic data
 - > Reliability Engineering / RAMS analyses
 - requires large datasets / inaccurate for changing conditions
- Model based approach
 - predict failures with physical failure models and monitored (or prescribed) variation in usage
 - > quantitative relation between usage and degradation
 - > enables dynamic maintenance

Failure

- Requires understanding of failure behaviour
 - How ? Why ? When ?
- Failure: "reaching such a state that the intended function can no longer be fulfilled"
 - depends on function
 - not always physical failure

• Failure mode

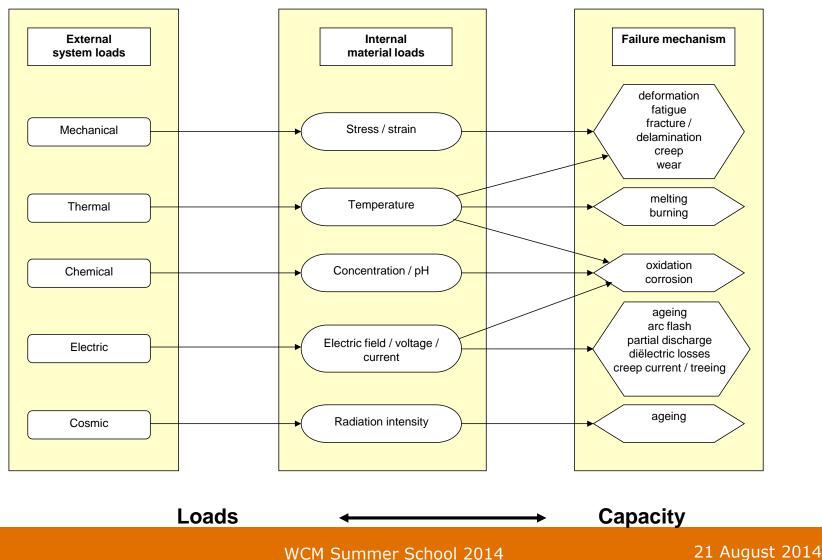
- Manner in which a system functionally fails
- Detected by decreased performance or inspection
- Several hierarchical levels
- Also non-physical causes: human errors / contamination


Failure mechanism

- Physical or chemical process yielding degradation and leading to failure
- Limited number !

Balance

Load versus load-carrying capacity



WCM Summer School 2014

21 August 2014

Load types and failure mechanisms

8

21 August 2014

- **Broken bicycle chain**
- Fractured window hit by football

Problem 1

Determine for the failures mentioned below

- the failure mechanism
- the governing load
- the load-carrying capacity
- a preventive solution

Netherlands Defence Academy

LOADS

WCM Summer School 2014

21 August 2014

Loads

• External loads vs internal loads

Different load types

- Mechanical
- Thermal
- Electric
- Chemical
- Radiative

Relation with usage

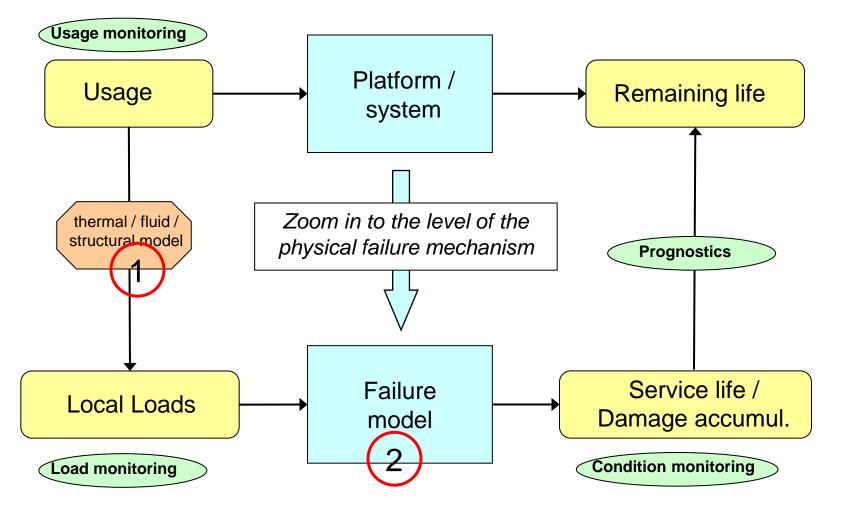
External and internal loads

• Failure occurs on (microscopic) material level

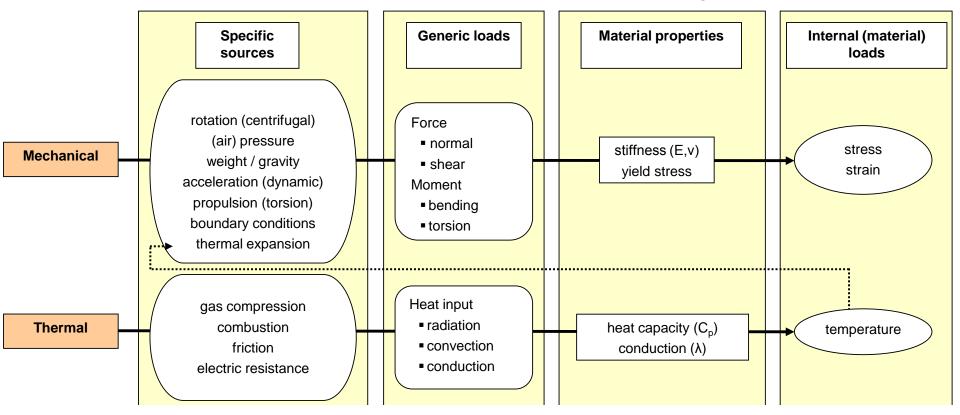
- mechanical fracture = release of atom bonds
- breakdown of electric insulator = release of electrons

• Failure is governed by local internal load

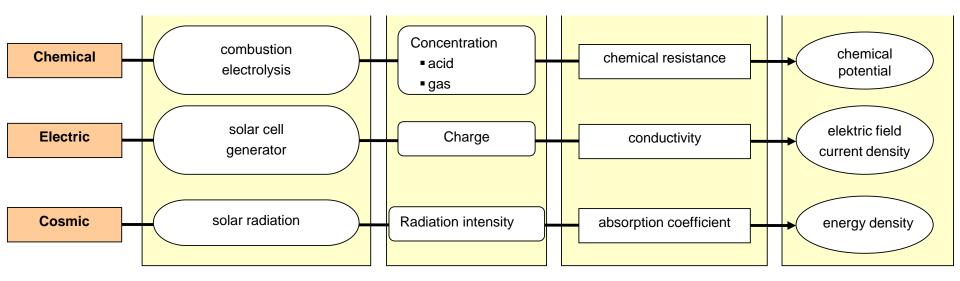
- local stress, strain, electric field, temperature


• Operator determines external loads

- Force, moment, charge distribution, heat input


Relating usage to service life

Load types


• **Mechanical:** Forces/moments caused by various sources

• Thermal: Heat flow caused by several sources

Load types (2)

Examples of sources mechanical loads

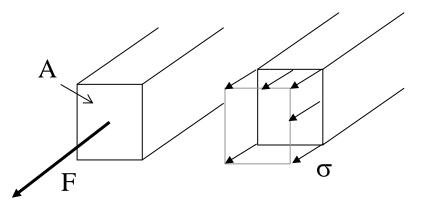
• Pressure

- distributed load exerted by environment of body:
 - > water pressure (hull of ship, submarine)
 - > air / gas pressure (gas pressure vessel, aircraft wing)
- total force determined by distributed load (f in N/m²) and surface (A):

$$F = \int_{A} f dA$$

• Acceleration:

- acceleration (a) requires force (Newton's law) proportional to mass (m) and a: F = m a
- Rotation is acceleration \rightarrow centrifugal force acts on rotating body (angular velocity ω and radius r):


$$F_{cf} = m\omega^2 r$$

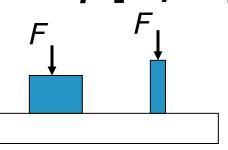
Internal mechanical loads: stress

- Local load parameter
- Relating external load (force / moment) to the properties of cross section
- Normal force
 - uniform normal stress σ

$$\sigma = \frac{F}{A}$$

Internal mechanical loads: stress (2)

Similar for shear, bending and torsion



Thermal loads

Heat input per unit time and unit area: q [W/m²]

internal heat generation

- friction $Q = F_w v = \mu F_n v$

electric resistance

$$Q = \frac{V^2}{R} = I^2 R$$

external heat generation

compression

$$\frac{pV}{T} = \text{constant}$$

- combustion
- causes increase or decrease of temperature:
 T [°C of K]

Internal load: temperature

- temperature is state variable: always a value
- only changes when (nett) amount of heat is added / removed
- temperature increase depends on amount of heat Q [J], mass and material:

$$\Delta T = \frac{Q}{m c_p}$$

- Typical values c_p
 - metal: 100 500 J/kgK
 - water: 4000 J/kgK

Summary

External loads

- Type and magnitude determined by usage of system

Internal loads

- Depend on magnitude external load + properties / dimensions
- Directly responsible for failure

- Usage + poperties determine loads
- Compare with capacity → failure mechanisms

FAILURE MECHANISMS

WCM Summer School 2014

21 August 2014

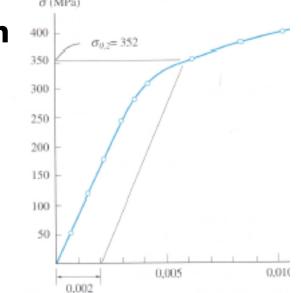
Failure mechanisms

- Static overload
- Deformation
- Fatigue
- Creep
- Wear
- Melting
- Thermal degradation
- Electric failures
- Corrosion
- Radiative failures

• Complete overview:

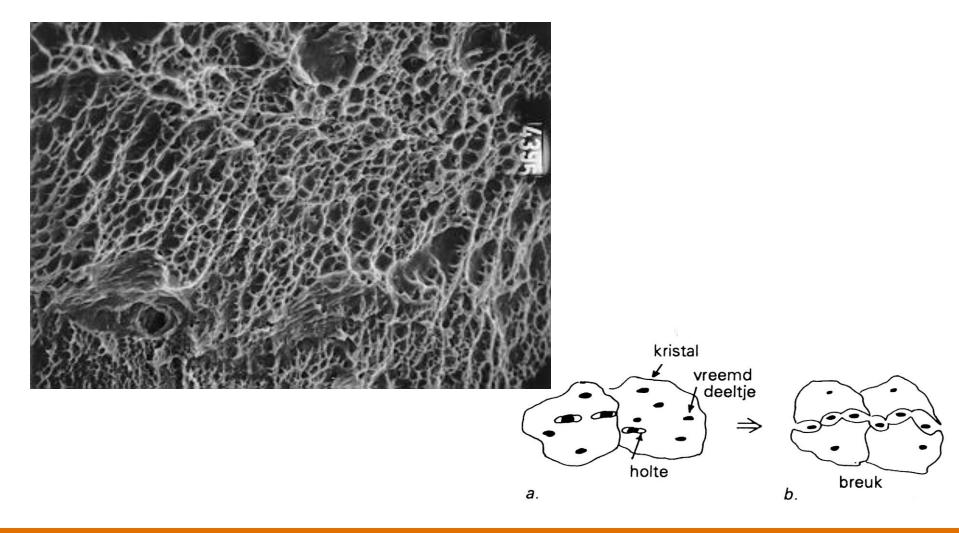
Principles of Loads and Failure Mechanisms

Applications in Maintenance, Reliability and Design


🖄 Springer

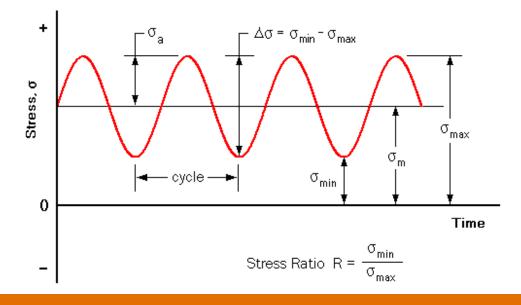
Static overload

when stress > strength


- load = stress
- capacity = material strength
- tensile strength determined by tensile test
- tensile strength temperature dependent
 Τ
 σ_t
 σ_t
- design: expected load < strength
 - effect temperature
 - safety factors
- Failure analysis
 - fracture surface \rightarrow 'dimples'

21 August 2014

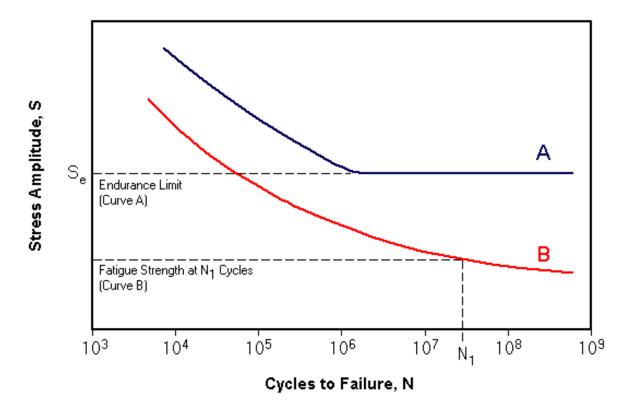
Fracture surface static overload



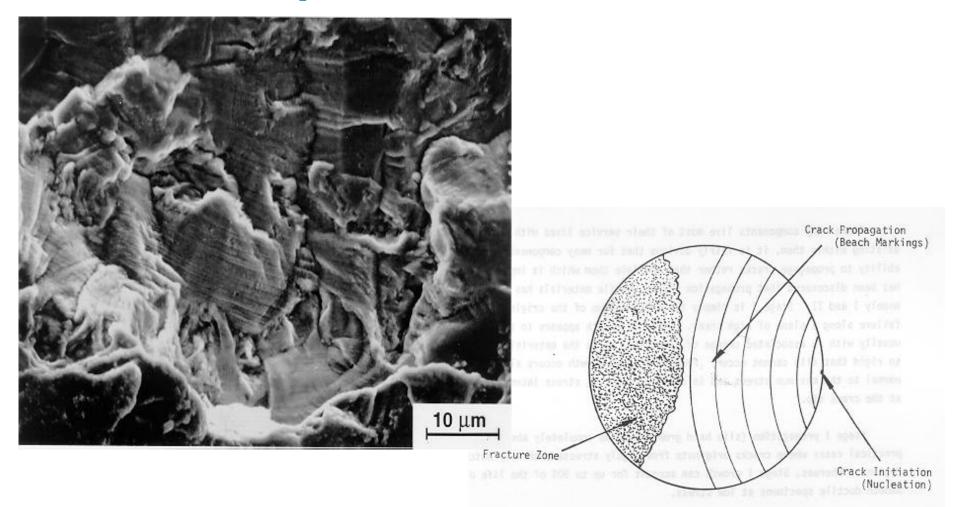
21 August 2014

Fatigue

- caused by cyclic load
- stress level below tensile strength
- failure occurs after large number of cycles (10⁴ – 10⁷)
- *load* = strain or stress cycle ($\Delta \varepsilon$ of $\Delta \sigma$)



Fatigue (2)


• Capacity = fatigue resistance

- S-N diagram or Wöhler-curve

Failure analysis

21 August 2014

Life assessment

- Constant amplitude: from S-N or Smith diagram
- Variable amplitude: Miner damage rule
 - *n* cycles at load with life *N* yields damage *D*

$$D = \frac{n}{N}$$

- 0 < D < 1 : percentage of life consumed
- p blocks of n_i cycles with life N_i yields damage

$$D = \sum_{i=1}^{p} D_{i} = \sum_{i=1}^{p} \frac{n_{i}}{N_{i}}$$

no sequence effects

Problem 2

For a gas turbine blade it has been derived:

 $-\sigma = 3.95 N^2$

A start/stop cycle is defined as:

- start/stop: N from 0 to 14.000 rpm and back to 0

Calculate the number of start/stops before the blade fails due to fatigue

In addittion to the start/stop cycle two more cycles exist:

- manoeuvre: N from 8.000 to 14.000 rpm and back to 8.000 rpm

- correction: N from 10.000 to 12.000 and back to 10.000 rpm The usage profiel of the engine is: per flight 1 start/stop, 3 manoeuvres and 10 corrections.

• Calculate the number of flights to failure

Wear

 occurs when parts move relative to each other or along liquid / gas

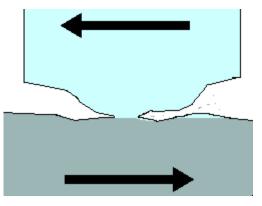
two types

- two-body wear mechanisms
 - » on contact between two parts
- single-body wear mechanisms
 - » on surface due to flowing medium

resulting in

- bad fitting
- vibrations (e.g. bearings)
- cracks fracture

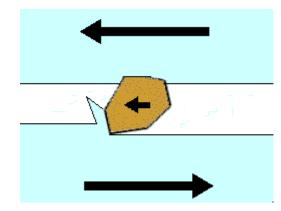

Wear mechanisms


Two-body wear

- abrasive wear
- corrosive wear
- surface wear
- adhesive wear
 - strong bonding between peaks of surface roughness
 - high friction \rightarrow high temperature
 - improve by lowering friction:
 - » materials
 - » lubrication

Single body wear

Erosion

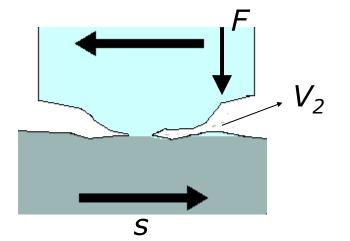




Wear mechanisms (2)

abrasive wear

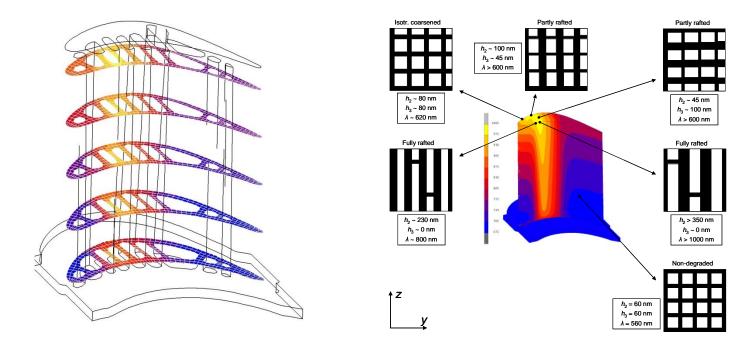
- when considerable differences in hardness (> 20%)
- presence of hard particles
 - » as additional body (three-body): sand
 - » fractured particles (debris)



Wear rate

Archard's law

$$V_i = k_i F s$$


- k [mm³/Nm] is specific wear rate (different for two bodies)
- k depends on
 - » material combination
 - » surface roughness
 - » contact temperature
 - » hardness
 - » lubrication

More advanced methods

- Calculate loads with FE / CFD models
- Complex (multi-scale) damage models

• Find balance between effort and benefits !

Summary

- Loads capacity balance
- Load types
- Failure mechanisms

- Preventive maintenance and prognostics
- RAMS analysis → Relevant Failure Parameter
- Condition monitoring
- Root cause analysis

APPLICATIONS

WCM Summer School 2014

21 August 2014

Application in maintenance

Knowledge on failure (mechanisms) can be used ...

before failures occur

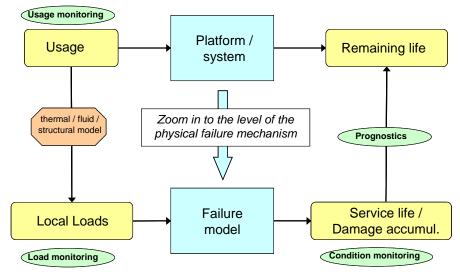
- Identify critical components \rightarrow FMECA
- Predict time to failure → determine optimal maintenance intervals
- Develop efficient condition monitoring systems

after failure has occurred

- Why did component fail ?
- How can future failures be prevented ?
- Root Cause Analysis

when a fraction of a (larger) population has failed

- Quantify failure behaviour
- Find Relevant Failure Parameter (RFP)


1. Preventive maintenance & prognostics

• Procedure

- Monitor actual usage of the system
- Derive internal loads from the usage
- Develop physical models for critical failure mechanism(s)
- Calculate service life consumption and remaining life
- See Tinga, Reliability Engineering and System Safety 2010

Applied to several military systems

- Chinook helicopter
- NH-90 helicopter
- CV-90 combat vehicle
- LC frigate

NH-90 helicopter prognostics

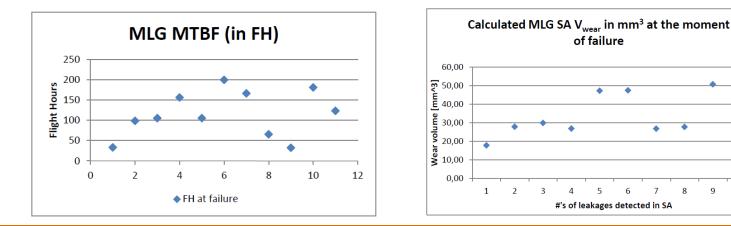
Identified critical components

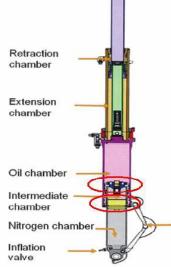
- Cost drivers
- Availability killers

• Determined failure mechanism + governing loads

HUMS system available for monitoring

- Usage \rightarrow flight hours, landings, conditions, etc.
- Health \rightarrow mainly vibrations


Maintenance primarely related to flight hours



NH-90 helicopter prognostics (2)

• For some components better parameters

- Landing gear shock absorber
 - > Mechanism: wear of seal
 - > Usage parameter: travelled distance
 → # landings + weight
- Blade folding system locking mechanism
 - > Mechanism: corrosion
 - > Usage parameter: saline flight hours
- See Heerink, TU Delft 2012

21 August 2014

10

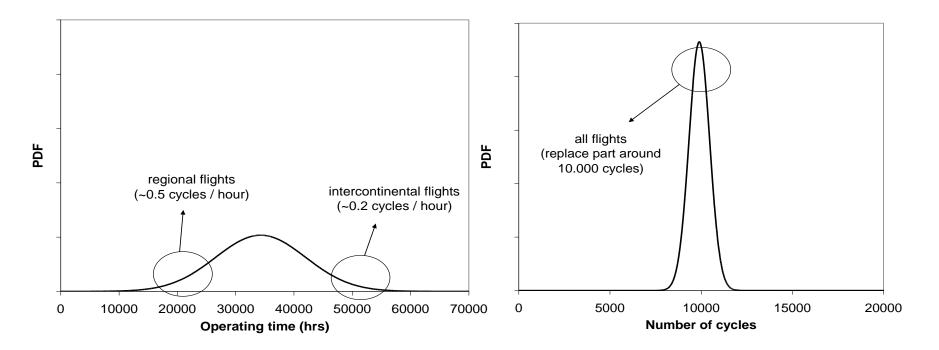
2. Relevant Failure Parameter

• RAMS / data analyses \rightarrow typical approach

- Collect failure data *ttf* in calendar / operating time
- Analyze data
 - > Mean Time Between Failures (MTBF)
 - > Parameters of distribution function (Weibull, exponential)
- Adapt maintenance policy to obtained values

Problem: uncertainty / variation

- Variation in usage / conditions causes variation in MTBF
- Ineffective or inefficient maintenance


Solution

- Determine more relevant failure parameter
 - > Operating hours, starts, cycles, ... in stead of hours / days

Relevant Failure Parameter - example

- Airliner with fleet of aircraft
- Part fails due to fatigue (~ 10.000 cycles)

Problem 3 - RFP

• A car is maintained every 15.000 km / 1 year

- Many parts replaced or inspected
- Usage parameter: km or calendar time

What would be the most relevant failure parameter for:

- 1. brake discs
- 2. tires
- 3. structure
- 4. engine lubrication oil
- 5. hydraulic oil in the brake system
- Is usage based maintenance the most appropriate policy ?

3. Condition monitoring

 Sensoring and data acquisition now well developed

Remaining challenges

- 1. Translation of data into maintenance information
 - \rightarrow only when condition is not directly monitored
 - performance
 - usage
- 2. Add prognosis to diagnosis
- 3. Selection of proper measurements and location

Condition Monitoring \rightarrow Condition Based Maintenance

Diagnosis vs. Prognosis

- Condition monitoring → assess the present condition
- Need for *prediction* of future maintenance
 - > less risk / better planning

• Two options:

- wait for indication of failure / degradation (*diagnostic*)
 - » often based on certain threshold value with safety factor
- predict remaining life (prognostic)
 - » from every state prediction of expected maintenance
 - » prediction improves when reaching end of life
 - » based on assumed usage

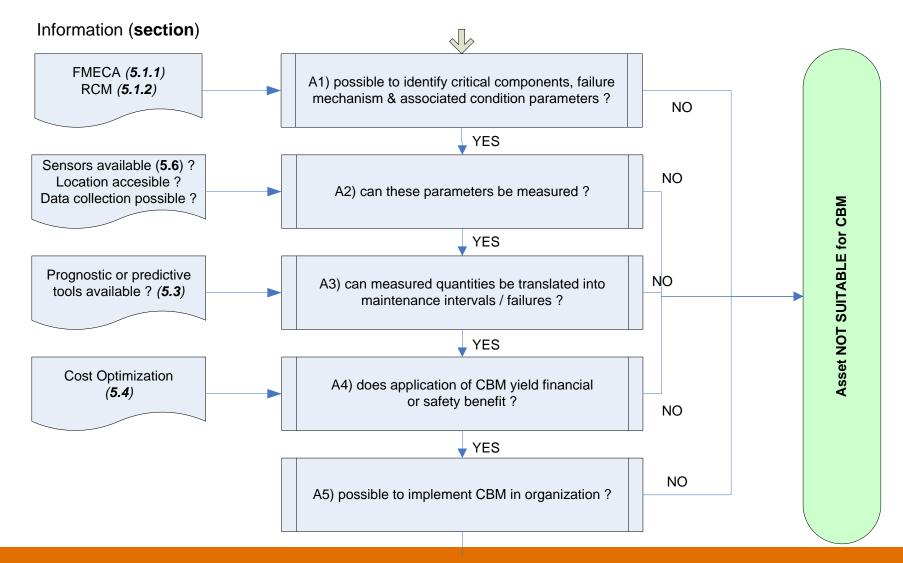
Prognostic approaches

- raw data / statistics \rightarrow trending
- physical processes

Development of new CM / CBM systems

• Selecting appropriate quantities for CM

- which parameters should be measured ?
- at what location ?
- how can measured quantities be translated into condition information ?


Criteria

- representative (knowledge on failure mechanisms)
- measurable (sensors, accesibility)

Condition Monitoring → **Condition Based Maintenance**

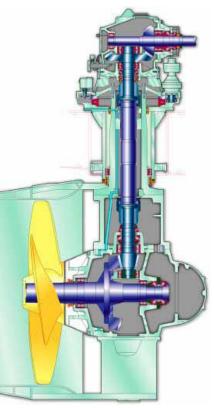
Decision scheme Condition Based Maintenance

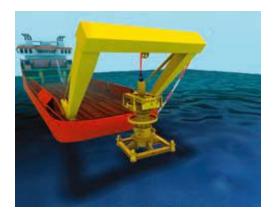
4. Root Cause Analysis (RCA)

- Structured method to find the cause of a failure in a system
- Solving problems is often only solving the symptoms
 - Failures keep returning
 - Low availaility / high costs
- RCA should be executed to a sufficiently deep level → failure mechanism + loads !

Solution is often rather simple

- Reduce loads on the system
- Increase capacity of the system


Case studies in WCM-IP

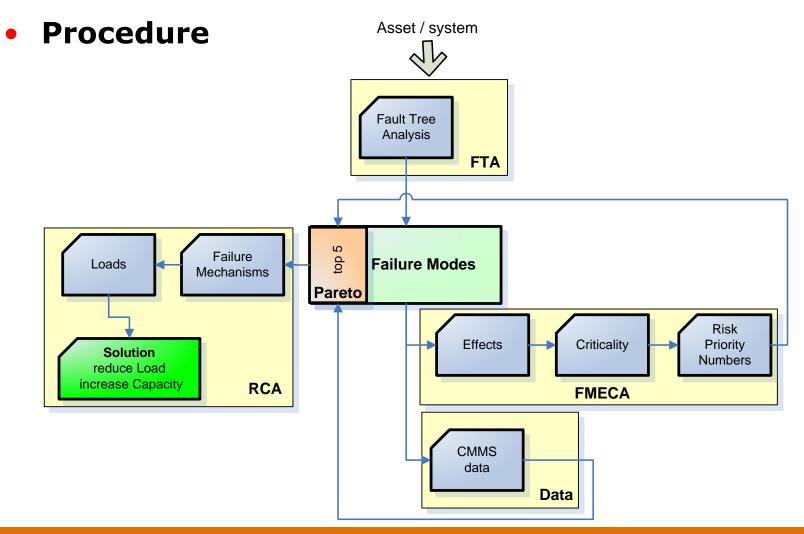

Bosch Rexroth

- hydraulic cylinder for off-shore

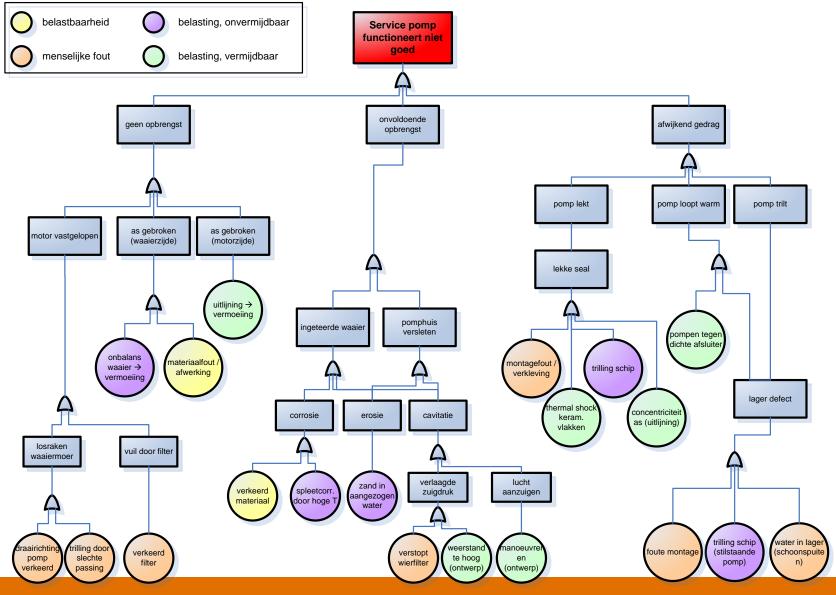
- Wärtsilä
 - Bearing in thruster

Case studies in WCM-IP

- Gasunie \rightarrow valves in gas network
- Koninklijke Marine \rightarrow fire extinguishing



21 August 2014



Mechanism based Failure Analysis

Netherlands Defence Academy

WCM Summer School 2014

21 August 2014

4 types of causes

1. Capacity too low \rightarrow quality control

• e.g. wrong impeller material \rightarrow corrosion

2. Human error \rightarrow (obeying) regulations

• e.g. wrong rotation direction

3. Load avoidably too high (misuse)

 e.g. shaft fracture due to misalignment, operating with closed valve

4. Load unavoidably too high

• e.g. failure of non-rotating bearing due to vibrations

Mechanisms & Solutions

Seal leakage

- Mechanisms
 - > wear (no water in pump during operation)
 - > thermal shock (cooling of heated seals causes fracture)
 - > damage due to vibration overload (cavitation, misalignment)
- Solution
 - > mainly caused by operating the pump incorrectly
 - > prevented by better instruction and training of the operators

• Insufficient yield

- Mechanisms: damaged impeller due to
 - > Corrosion, erosion by sand (shallow water), fatigue (cavit.)
- Solution
 - > most impeller failures unavoidable \rightarrow due to regular usage
 - Prediction may be possible → monitor operating hours in shallow water

Conclusion

- Understanding the failure behaviour enables more efficient maintenance strategies
- (in)balance between load and capacity is key to failures
- Effect of variations in usage is often neglected

 Model-based approach good addition to traditional experience-based approach